The Boolean Kinetics of Signal Transduction: Supplementary Material

Equations of the LAC_SIM model of the E.coli Lac operon (Figure 1):
$\mathrm{v} 1=\mathrm{Vml} /\left(1+(\mathrm{RPf} / \mathrm{Kil})^{\wedge} \mathrm{n} 1\right)$
where RPf is free (unbound) concentration of lac repressor
$\mathrm{v} 2=\beta-\mathrm{Gal}^{*} \mathrm{k} 2$
where β-Gal is concentration of β-galactosidase
$\mathrm{v} 3=\mathrm{Vm} 3$ * lactoseC $/($ lactoseC $+\mathrm{Km} 3)$
where lactoseC is cellular lactose concentration; $\mathrm{Vm} 3=\beta-\mathrm{Gal} * \mathrm{TO} 3$
$\mathrm{v} 4=$ lactoseE $^{\star} \mathrm{k} 4$
where lactoseE is extracellular lactose concentration
v5 = permease * k5
where permease is concentration of galactoside permease
$\mathrm{v} 6=\mathrm{Vm6}^{*}$ lactose $\mathrm{E} /($ lactose $\mathrm{E}+\mathrm{Km6}) /(1+\mathrm{I} / \mathrm{Ki} 6)$
where $\mathrm{Vm} 6=$ permease * TO6 and I is an inhibitor of facilitated transport.
v7 $=$ lactoseC * k7
$\mathrm{k} 2, \mathrm{k} 4, \mathrm{k} 5$ and k 7 are first-order rate constants for their respective reactions. Vm1, Vm3 and Vm6 are maximal velocities; Vm1 is a constant, and Vm 3 and Vm 6 are the product of the respective enzyme concentrations and their turnover numbers, TO3 and TO6, respectively; Km3 and Km6 are Michaelis constants; Kil and Ki6 are noncompetitive inhibition constants; n1 and n3 are Hill constants.

Then lactoseE is constant
$\mathrm{d}[$ lactoseC $] / \mathrm{dt}=\mathrm{v} 4+\mathrm{v} 6-\mathrm{v} 3-\mathrm{v} 7$
$\mathrm{d}[\beta-\mathrm{Gal}] / \mathrm{dt}=\mathrm{v} 1-\mathrm{v} 2$
$\mathrm{d}[$ permease $] / \mathrm{dt}=\mathrm{v} 1-\mathrm{v} 5$
$\left.\mathrm{RPf}=\mathrm{RPt} /(1+(\text { lactoseC } / \mathrm{Ki} 3))^{\wedge} \mathrm{n} 3\right)$
where RPt is total (free + alloactose-bound) concentration of lac repressor.
Parameter values used for the simulations discussed in the main text were: $\mathrm{k} 2=1.0 ; \mathrm{k} 4=0.05 ; \mathrm{k} 5=4.5 ; \mathrm{k} 7=0.05 ; \mathrm{Vm} 1=100 ; \mathrm{TO}=0.167 ; \mathrm{TO} 6=0.98$; Km3=0.2; Km6=0.05; Kil=1.0.

Equations of the MAPK_SIM model of the human MAPK signalling pathway (see figure 4):
$\mathrm{v} 1=\mathrm{Vm} 1^{*} \mathrm{cfos} /(\mathrm{cfos}+\mathrm{Kml}) /(1+\mathrm{cyclinD} / \mathrm{Kil})$
$\mathrm{v} 2=\mathrm{cyclin} \mathrm{D}^{*} \mathrm{k} 2$
$\mathrm{v} 3=\mathrm{Vm} 3^{*}(\mathrm{ras} / \mathrm{Km} 3)^{\wedge} \mathrm{n} 3 /\left(1+(\mathrm{ras} / \mathrm{Km} 3)^{\wedge} \mathrm{n} 3\right)$
where ras indicates the ras-GTP complex.
$\mathrm{v} 4=\mathrm{Vm} 4{ }^{*} \mathrm{EGF} / \mathrm{Km} 4 /(1+\mathrm{EGF} / \mathrm{Km} 4) /(1+\mathrm{spr} / \mathrm{Ki} 4) /(1+\mathrm{I} 4 / \mathrm{Kinc})$
where spr is the sprouty protein [25], and I4 is an inhibitor of the EGF receptor tyrosine kinase, e.g.erlotinib [26].
$\mathrm{v} 5=\mathrm{Vm} 5{ }^{*} \mathrm{Grb} 2 / \mathrm{Km} 5 /(1+\mathrm{Grb} 2 / \mathrm{Km} 5)$
$\mathrm{v} 6=\mathrm{Grb} 2{ }^{*} \mathrm{k} 6$
v7 $=$ Vm7 * MEKP/ Km7 / ($1+$ MEKP/Km7 $) /(1+$ spr/Ki7 $)$
where MEKP is the active, phosphorylated form of MEK.
$\mathrm{v} 8=\mathrm{ras}^{*} \mathrm{k} 8$
$\mathrm{v} 9=\mathrm{Vm} 9{ }^{*} \mathrm{raf} / \mathrm{Km} 9 /(1+\mathrm{raf} / \mathrm{Km} 9) /(1+\mathrm{ERKP} / \mathrm{Ki} 9) /(1+\mathrm{I} 9 / \mathrm{Ki} 8)$
where ERKP is the phosphorylated form of ERK and I9 is a raf kinase inhibitor, e.g. sorafenib [27].
$\mathrm{v} 10=\mathrm{Vm} 10{ }^{*}$ MEKP $/ \mathrm{Km10} /(1+\mathrm{MEKP} / \mathrm{Km} 10)$
$\mathrm{v} 11=$ ERKP $^{*} \mathrm{k} 11$
$\mathrm{k} 2, \mathrm{k} 6$, k 8 and k 11 are first-order rate constants for their respective reactions. Vm1, Vm3, Vm4, Vm5, Vm7, Vm9 and Vm10 are maximal velocities; $\mathrm{Km} 1, \mathrm{Km} 3, \mathrm{Km} 4, \mathrm{Km} 5, \mathrm{Km} 7, \mathrm{Km} 9$ and Km 10 are Michaelis constants; Ki1, Ki4, Ki7, Ki8, Ki9 and Kinc are noncompetitive inhibition constants; n 3 is a Hill constant.

Then
$\mathrm{d}[\mathrm{Grb} 2] / \mathrm{dt}=\mathrm{v} 4-\mathrm{v} 6$
$\mathrm{d}[\mathrm{ras}] / \mathrm{dt}=\mathrm{v} 5+\mathrm{v} 21-\mathrm{v} 8$; note: v 21 is a cross-talk signal from the P13K pathway, discussed below.
$\mathrm{d}[\mathrm{raf}] / \mathrm{dt}=\mathrm{v} 3-\mathrm{v} 9$
d [MEKP]/dt = v9 - v10
$\mathrm{d}[$ ERKP $] / \mathrm{dt}=\mathrm{v} 10-\mathrm{v} 7-\mathrm{v} 11$
$\mathrm{d}[\mathrm{cfos}] / \mathrm{dt}=\mathrm{v} 7-\mathrm{vl}$
k 2 , k 6 , k 8 and k 11 are first-order rate constants for their respective reactions. Vm1, Vm3, Vm4, Vm5, Vm7, Vm9 and Vm10 are maximal velocities; $\mathrm{Km} 1, \mathrm{Km} 3, \mathrm{Km} 4, \mathrm{Km} 5, \mathrm{Km} 7, \mathrm{Km} 9$ and Km 10 are Michaelis constants; Ki1, $\mathrm{Ki4}, \mathrm{Ki} 7$ and Ki 9 are noncompetitive inhibition constants; n 3 is a Hill constant.
$\mathrm{k} 2=1.6$; $\mathrm{k} 6=.05$; $\mathrm{k} 8=.028$; $\mathrm{k} 11=.02$; Vm1=19.4; Vm3=10; Vm4=.33; Vm5=50; Vm7=20; Vm9 10 ; Vm10 $=20$; $\mathrm{Km} 1=1$; Km3 $=30$; Km4=1; Km5=3.5; Km7 $=10$; Km9=2; Km10=1; Kil=10; Ki3=1; ki4=1; Ki5=1; Ki7=1; Ki9=400; Ki10=1; n3=4.

Equations of the Akt_SIM model of the human Akt (PI3K) signalling pathway (Figure 7):

```
v12 = Vm12 * PDGF/Km12 /(1 + PDGF/Km12)
v13 = PI3K * k13
v14 = Vm14 * PI3K/Km14 /(1 + PI3K/Km14) / (1+ I14/Ki14)
```

where I14 is an inhibitor of PI3 kinase, e.g. LY294002 [28].
$\mathrm{v} 15=\mathrm{Vm} 15 *$ Akt/Km15 /(1 + Akt/Km15)
$\mathrm{v} 16=\mathrm{Vm} 16^{*} \mathrm{mTOR} / \mathrm{Km} 16 /(1+\mathrm{mTOR} / \mathrm{Km} 16)$
$\mathrm{v} 17=\mathrm{eIF} 4 \mathrm{E}$ * k 17
$\mathrm{v} 18=\mathrm{Vm} 18{ }^{*} \mathrm{mTOR} / \mathrm{Km} 18 /(1+\mathrm{mTOR} / \mathrm{Km} 18)$
$\mathrm{v} 19=\mathrm{p} 70 \mathrm{~S} 6 \mathrm{~K} * \mathrm{k} 19$
$\mathrm{v} 20=\mathrm{Vm} 20^{*} \mathrm{eIF} 4 \mathrm{E} / \mathrm{Ka} 20 /(1+\mathrm{eIF} 4 \mathrm{E} / \mathrm{Ka} 20)^{*} \mathrm{p} 70 \mathrm{~S} 6 \mathrm{~K} / \mathrm{Kb} 20 /(1+\mathrm{p} 70 \mathrm{~S} 6 \mathrm{~K} / \mathrm{Kb} 20)$
$\mathrm{v} 21=\mathrm{PI} 3 \mathrm{~K}^{*}$ k21
$\mathrm{v} 22=$ ras $^{*} \mathrm{k} 22$
$\mathrm{k} 13, \mathrm{k} 17, \mathrm{k} 19, \mathrm{k} 21$ and k 22 are first-order rate constants for their respective reactions. Vm12, Vm14, Vm15, Vm16, Vm18 and Vm20 are maximal velocities; $\mathrm{Km12}, \mathrm{Km14}, \mathrm{Km15}, \mathrm{Km16}$ and Km 18 are Michaelis constants; Ka 20 and Kb 20 are dissociation constants for binding of eIF4E and p70S6K respectively; Ki14 is a noncompetitive inhibition constant.

```
Then
\(\mathrm{d}[\) PI3K \(]=\mathrm{v} 12+\mathrm{v} 22-\mathrm{v} 13\)
\(\mathrm{d}[\) Akt \(]=\mathrm{v} 14-\mathrm{v} 15\)
\(\mathrm{d}[\mathrm{mTOR}]=\mathrm{v} 15-\mathrm{v} 16-\mathrm{v} 18\)
\(\mathrm{d}[\mathrm{eIF} 4 \mathrm{E}]=\mathrm{v} 16-\mathrm{v} 17\)
\(\mathrm{d}[\mathrm{p} 70 \mathrm{~S} 6 \mathrm{~K}]=\mathrm{v} 18-\mathrm{v} 19\)
```

Parameter values used for the simulations used in the main text were: $\mathrm{k} 13=.05 ; \mathrm{k} 17=.2 ; \mathrm{k} 19=.1 ; \mathrm{k} 21=.01 ; \mathrm{k} 22=.01 ; \mathrm{Vm} 12=.66 ; \mathrm{Vm} 14=2 ; \mathrm{Vm} 15=4$; Vm16 $=5 ; \mathrm{Vm} 18=3 ; \mathrm{Vm} 20=6 ; \mathrm{Km} 12=1 ; \mathrm{km} 14=5 ; \mathrm{Km} 15=5 ; \mathrm{Km} 16=5 ; \mathrm{Km} 18=4 ; \mathrm{Km} 20=1$.

Copyright: ©2017 Jackson RC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

